eyebot_light_rotzonly_sensor.cpp
Go to the documentation of this file.
1 
7 #include <argos3/core/simulator/simulator.h>
8 #include <argos3/core/simulator/entity/embodied_entity.h>
9 #include <argos3/core/simulator/entity/composable_entity.h>
10 #include <argos3/plugins/simulator/entities/light_entity.h>
11 #include <argos3/plugins/simulator/entities/light_sensor_equipped_entity.h>
12 
14 
15 namespace argos {
16 
17  /****************************************/
18  /****************************************/
19 
20  static CRange<Real> SENSOR_RANGE(0.0f, 1.0f);
21  static CRadians SENSOR_SPACING = CRadians(ARGOS_PI / 12.0f);
22  static CRadians SENSOR_HALF_SPACING = SENSOR_SPACING * 0.5;
23 
24  /****************************************/
25  /****************************************/
26 
27  static SInt32 Modulo(SInt32 n_value, SInt32 un_modulo) {
28  while(n_value < 0) n_value += un_modulo;
29  while(n_value >= un_modulo) n_value -= un_modulo;
30  return n_value;
31  }
32 
33  static Real ComputeReading(Real f_distance) {
34  if(f_distance > 2.5f) {
35  return 0.0f;
36  }
37  else {
38  return ::exp(-f_distance * 2.0f);
39  }
40  }
41 
42  static Real ScaleReading(const CRadians& c_angular_distance) {
43  if(c_angular_distance > CRadians::PI_OVER_TWO) {
44  return 0.0f;
45  }
46  else {
47  return (1.0f - 2.0f * c_angular_distance / CRadians::PI);
48  }
49  }
50 
51  /****************************************/
52  /****************************************/
53 
55  m_pcEmbodiedEntity(nullptr),
56  m_bShowRays(false),
57  m_pcRNG(nullptr),
58  m_bAddNoise(false),
59  m_cSpace(CSimulator::GetInstance().GetSpace()) {}
60 
61  /****************************************/
62  /****************************************/
63 
65  try {
66  m_pcEmbodiedEntity = &(c_entity.GetComponent<CEmbodiedEntity>("body"));
67  m_pcControllableEntity = &(c_entity.GetComponent<CControllableEntity>("controller"));
68  m_pcLightEntity = &(c_entity.GetComponent<CLightSensorEquippedEntity>("light_sensors"));
70 
71  /* sensor is enabled by default */
72  Enable();
73  }
74  catch(CARGoSException& ex) {
75  THROW_ARGOSEXCEPTION_NESTED("Can't set robot for the eye-bot light default sensor", ex);
76  }
77  }
78 
79  /****************************************/
80  /****************************************/
81 
83  try {
84  /* Show rays? */
85  GetNodeAttributeOrDefault(t_tree, "show_rays", m_bShowRays, m_bShowRays);
86  /* Parse noise level */
87  Real fNoiseLevel = 0.0f;
88  GetNodeAttributeOrDefault(t_tree, "noise_level", fNoiseLevel, fNoiseLevel);
89  if(fNoiseLevel < 0.0f) {
90  THROW_ARGOSEXCEPTION("Can't specify a negative value for the noise level of the light sensor");
91  }
92  else if(fNoiseLevel > 0.0f) {
93  m_bAddNoise = true;
94  m_cNoiseRange.Set(-fNoiseLevel, fNoiseLevel);
95  m_pcRNG = CRandom::CreateRNG("argos");
96  }
98  }
99  catch(CARGoSException& ex) {
100  THROW_ARGOSEXCEPTION_NESTED("Initialization error in rot_z_only light sensor", ex);
101  }
102  }
103 
104  /****************************************/
105  /****************************************/
106 
108  /* sensor is disabled--nothing to do */
109  if (IsDisabled()) {
110  return;
111  }
112  /* Erase readings */
113  for(size_t i = 0; i < m_tReadings.size(); ++i) {
114  m_tReadings[i].Value = 0.0f;
115  }
116  /* Get eye-bot orientation */
117  CRadians cTmp1, cTmp2, cOrientationZ;
118  m_pcEmbodiedEntity->GetOriginAnchor().Orientation.ToEulerAngles(cOrientationZ, cTmp1, cTmp2);
119  /* Ray used for scanning the environment for obstacles */
120  CRay3 cOcclusionCheckRay;
121  cOcclusionCheckRay.SetStart(m_pcEmbodiedEntity->GetOriginAnchor().Position);
122  CVector3 cRobotToLight;
123  /* Buffer for the angle of the light wrt to the eye-bot */
124  CRadians cAngleLightWrtEyebot;
125  /* Buffers to contain data about the intersection */
126  SEmbodiedEntityIntersectionItem sIntersection;
127  /* List of light entities */
128  CSpace::TMapPerType& mapLights = m_cSpace.GetEntitiesByType("light");
129  /*
130  * 1. go through the list of light entities in the scene
131  * 2. check if a light is occluded
132  * 3. if it isn't, distribute the reading across the sensors
133  * NOTE: the readings are additive
134  * 4. go through the sensors and clamp their values
135  */
136  for(auto it = mapLights.begin();
137  it != mapLights.end();
138  ++it) {
139  /* Get a reference to the light */
140  CLightEntity& cLight = *(any_cast<CLightEntity*>(it->second));
141  /* Consider the light only if it has non zero intensity */
142  if(cLight.GetIntensity() > 0.0f) {
143  /* Set the ray end */
144  cOcclusionCheckRay.SetEnd(cLight.GetPosition());
145  /* Check occlusion between the eye-bot and the light */
146  if(! GetClosestEmbodiedEntityIntersectedByRay(sIntersection,
147  cOcclusionCheckRay,
148  *m_pcEmbodiedEntity)) {
149  /* The light is not occluded */
150  if(m_bShowRays) {
151  m_pcControllableEntity->AddCheckedRay(false, cOcclusionCheckRay);
152  }
153  /* Get the distance between the light and the eye-bot */
154  cOcclusionCheckRay.ToVector(cRobotToLight);
155  /*
156  * Linearly scale the distance with the light intensity
157  * The greater the intensity, the smaller the distance
158  */
159  cRobotToLight /= cLight.GetIntensity();
160  /* Get the angle wrt to eye-bot rotation */
161  cAngleLightWrtEyebot = cRobotToLight.GetZAngle();
162  cAngleLightWrtEyebot -= cOrientationZ;
163  /*
164  * Find closest sensor index to point at which ray hits eyebot body
165  * Rotate whole body by half a sensor spacing (corresponding to placement of first sensor)
166  * Division says how many sensor spacings there are between first sensor and point at which ray hits eyebot body
167  * Increase magnitude of result of division to ensure correct rounding
168  */
169  Real fIdx = (cAngleLightWrtEyebot - SENSOR_HALF_SPACING) / SENSOR_SPACING;
170  SInt32 nReadingIdx = static_cast<SInt32>((fIdx > 0) ? fIdx + 0.5f : fIdx - 0.5f);
171  /* Set the actual readings */
172  Real fReading = cRobotToLight.Length();
173  /*
174  * Take 6 readings before closest sensor and 6 readings after - thus we
175  * process sensors that are with 180 degrees of intersection of light
176  * ray with robot body
177  */
178  for(SInt32 nIndexOffset = -6; nIndexOffset < 7; ++nIndexOffset) {
179  UInt32 unIdx = Modulo(nReadingIdx + nIndexOffset, 24);
180  CRadians cAngularDistanceFromOptimalLightReceptionPoint = Abs((cAngleLightWrtEyebot - m_tReadings[unIdx].Angle).SignedNormalize());
181  /*
182  * ComputeReading gives value as if sensor was perfectly in line with
183  * light ray. We then linearly decrease actual reading from 1 (dist
184  * 0) to 0 (dist PI/2)
185  */
186  m_tReadings[unIdx].Value += ComputeReading(fReading) * ScaleReading(cAngularDistanceFromOptimalLightReceptionPoint);
187  }
188  }
189  else {
190  /* The ray is occluded */
191  if(m_bShowRays) {
192  m_pcControllableEntity->AddCheckedRay(true, cOcclusionCheckRay);
193  m_pcControllableEntity->AddIntersectionPoint(cOcclusionCheckRay, sIntersection.TOnRay);
194  }
195  }
196  }
197  }
198  /* Apply noise to the sensors */
199  if(m_bAddNoise) {
200  for(size_t i = 0; i < 24; ++i) {
202  }
203  }
204  /* Trunc the reading between 0 and 1 */
205  for(size_t i = 0; i < 24; ++i) {
206  SENSOR_RANGE.TruncValue(m_tReadings[i].Value);
207  }
208  }
209 
210  /****************************************/
211  /****************************************/
212 
214  for(UInt32 i = 0; i < GetReadings().size(); ++i) {
215  m_tReadings[i].Value = 0.0f;
216  }
217  }
218 
219  /****************************************/
220  /****************************************/
221 
223  "eyebot_light", "rot_z_only",
224  "Carlo Pinciroli [ilpincy@gmail.com]",
225  "1.0",
226  "The eye-bot light sensor (optimized for 2D).",
227  "This sensor accesses a set of light sensors. The sensors all return a value\n"
228  "between 0 and 1, where 0 means nothing within range and 1 means the perceived\n"
229  "light saturates the sensor. Values between 0 and 1 depend on the distance of\n"
230  "the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n"
231  "distance between a sensor and the light, and I is the reference intensity of the\n"
232  "perceived light. The reference intensity corresponds to the minimum distance at\n"
233  "which the light saturates a sensor. The reference intensity depends on the\n"
234  "individual light, and it is set with the \"intensity\" attribute of the light\n"
235  "entity. In case multiple lights are present in the environment, each sensor\n"
236  "reading is calculated as the sum of the individual readings due to each light.\n"
237  "In other words, light wave interference is not taken into account. In\n"
238  "controllers, you must include the ci_light_sensor.h header.\n\n"
239  "REQUIRED XML CONFIGURATION\n\n"
240  " <controllers>\n"
241  " ...\n"
242  " <my_controller ...>\n"
243  " ...\n"
244  " <sensors>\n"
245  " ...\n"
246  " <eyebot_light implementation=\"rot_z_only\" />\n"
247  " ...\n"
248  " </sensors>\n"
249  " ...\n"
250  " </my_controller>\n"
251  " ...\n"
252  " </controllers>\n\n"
253  "OPTIONAL XML CONFIGURATION\n\n"
254  "It is possible to draw the rays shot by the light sensor in the OpenGL\n"
255  "visualization. This can be useful for sensor debugging but also to understand\n"
256  "what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n"
257  "they are not obstructed and in purple when they are. In case a ray is\n"
258  "obstructed, a black dot is drawn where the intersection occurred.\n"
259  "To turn this functionality on, add the attribute \"show_rays\" as in this\n"
260  "example:\n\n"
261  " <controllers>\n"
262  " ...\n"
263  " <my_controller ...>\n"
264  " ...\n"
265  " <sensors>\n"
266  " ...\n"
267  " <eyebot_light implementation=\"rot_z_only\"\n"
268  " show_rays=\"true\" />\n"
269  " ...\n"
270  " </sensors>\n"
271  " ...\n"
272  " </my_controller>\n"
273  " ...\n"
274  " </controllers>\n\n"
275  "It is possible to add uniform noise to the sensors, thus matching the\n"
276  "characteristics of a real robot better. This can be done with the attribute\n"
277  "\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n"
278  "reading. The final sensor reading is always normalized in the [0-1] range.\n\n"
279  " <controllers>\n"
280  " ...\n"
281  " <my_controller ...>\n"
282  " ...\n"
283  " <sensors>\n"
284  " ...\n"
285  " <eyebot_light implementation=\"rot_z_only\"\n"
286  " noise_level=\"0.1\" />\n"
287  " ...\n"
288  " </sensors>\n"
289  " ...\n"
290  " </my_controller>\n"
291  " ...\n"
292  " </controllers>\n\n"
293  "OPTIONAL XML CONFIGURATION\n\n"
294  "None.\n",
295  "Usable"
296  );
297 
298 }
#define THROW_ARGOSEXCEPTION_NESTED(message, nested)
This macro throws an ARGoS exception with the passed message and nesting the passed exception.
#define THROW_ARGOSEXCEPTION(message)
This macro throws an ARGoS exception with the passed message.
signed int SInt32
32-bit signed integer.
Definition: datatypes.h:93
unsigned int UInt32
32-bit unsigned integer.
Definition: datatypes.h:97
float Real
Collects all ARGoS code.
Definition: datatypes.h:39
#define ARGOS_PI
To be used when initializing static variables.
Definition: angles.h:32
The namespace containing all the ARGoS related code.
Definition: ci_actuator.h:12
bool GetClosestEmbodiedEntityIntersectedByRay(SEmbodiedEntityIntersectionItem &s_item, const CRay3 &c_ray)
Returns the closest intersection with an embodied entity to the ray start.
void GetNodeAttributeOrDefault(TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
Returns the value of a node's attribute, or the passed default value.
REGISTER_SENSOR(CEPuckProximityDefaultSensor, "epuck_proximity", "default", "Danesh Tarapore [daneshtarapore@gmail.com]", "1.0", "The E-Puck proximity sensor.", "This sensor accesses the epuck proximity sensor. For a complete description\n" "of its usage, refer to the ci_epuck_proximity_sensor.h interface. For the XML\n" "configuration, refer to the default proximity sensor.\n", "Usable")
ticpp::Element TConfigurationNode
The ARGoS configuration XML node.
T Abs(const T &t_v)
Returns the absolute value of the passed argument.
Definition: general.h:25
virtual void Enable()
Enables updating of sensor information in the event loop.
Definition: ci_sensor.h:78
bool IsDisabled() const
Definition: ci_sensor.h:86
Basic class for an entity that contains other entities.
CEntity & GetComponent(const std::string &str_component)
Returns the component with the passed string label.
An entity that contains a pointer to the user-defined controller.
void AddIntersectionPoint(const CRay3 &c_ray, Real f_t_on_ray)
Adds an intersection point to the list.
void AddCheckedRay(bool b_obstructed, const CRay3 &c_ray)
Adds a ray to the list of checked rays.
This entity is a link to a body in the physics engine.
const SAnchor & GetOriginAnchor() const
Returns a const reference to the origin anchor associated to this entity.
const CVector3 & GetPosition() const
CQuaternion Orientation
The orientation of the anchor wrt the global coordinate system.
Definition: physics_model.h:53
CVector3 Position
The position of the anchor wrt the global coordinate system.
Definition: physics_model.h:51
The core class of ARGOS.
Definition: simulator.h:62
TMapPerType & GetEntitiesByType(const std::string &str_type)
Returns a map containing all the objects of a given type.
Definition: space.h:226
std::map< std::string, CAny, std::less< std::string > > TMapPerType
A map of entities indexed by type description.
Definition: space.h:56
The exception that wraps all errors in ARGoS.
It defines the basic type CRadians, used to store an angle value in radians.
Definition: angles.h:42
static const CRadians PI
The PI constant.
Definition: angles.h:49
static const CRadians PI_OVER_TWO
Set to PI / 2.
Definition: angles.h:59
void ToEulerAngles(CRadians &c_z_angle, CRadians &c_y_angle, CRadians &c_x_angle) const
Definition: quaternion.h:172
void TruncValue(T &t_value) const
Definition: range.h:97
void Set(const T &t_min, const T &t_max)
Definition: range.h:68
void SetEnd(const CVector3 &c_end)
Definition: ray3.h:57
void SetStart(const CVector3 &c_start)
Definition: ray3.h:53
CVector3 & ToVector(CVector3 &c_buffer) const
Definition: ray3.h:100
static CRNG * CreateRNG(const std::string &str_category)
Creates a new RNG inside the given category.
Definition: rng.cpp:347
CRadians Uniform(const CRange< CRadians > &c_range)
Returns a random value from a uniform distribution.
Definition: rng.cpp:87
A 3D vector class.
Definition: vector3.h:31
Real Length() const
Returns the length of this vector.
Definition: vector3.h:227
CRadians GetZAngle() const
Returns the angle between this vector and the z axis.
Definition: vector3.h:360
const TReadings & GetReadings() const
Returns the readings of this sensor.
CRandom::CRNG * m_pcRNG
Random number generator.
CControllableEntity * m_pcControllableEntity
Reference to controllable entity associated to this sensor.
bool m_bAddNoise
Whether to add noise or not.
virtual void SetRobot(CComposableEntity &c_entity)
Sets the entity associated to this sensor.
virtual void Init(TConfigurationNode &t_tree)
Initializes the sensor from the XML configuration tree.
CLightSensorEquippedEntity * m_pcLightEntity
Reference to light sensor equipped entity associated to this sensor.
virtual void Update()
Updates the state of the entity associated to this sensor, if the sensor is currently enabled.
virtual void Reset()
Resets the sensor to the state it had just after Init().
CEmbodiedEntity * m_pcEmbodiedEntity
Reference to embodied entity associated to this sensor.
CSpace & m_cSpace
Reference to the space.
bool m_bShowRays
Flag to show rays in the simulator.
Real GetIntensity() const
Definition: light_entity.h:37